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A theoretical framework has been presented, which links two diverse molecular problems: 
the study of symmorphy transformations of molecular shape analysis (further developed in the 
present paper) and that of additivity of the zero-point vibrational energy of hydrocarbons and 
the total pi-electron energy of alternant hydrocarbons. The linkage, using fundamental tools 
of (general) topology and algebra, makes it possible to mutually introduce the methodologies 
used in fields hitherto separately investigated. By establishing this linkage, topological patterns 
described by symmorphy groups can be treated by the algebraic methods developed for the 
above additivity problems. The linkage also brings forth new techniques of topologizing the 
repeat space Xr(q) for the additivity problems. Moreover, this connection paves the way to ana- 
lyzing molecular homologous series and their properties by means of associating sequences of 
molecular structures with elements of a repeat space equipped with a topology. 

1. Introduct ion 

The recognition of  pattern, shape, and form in the varieties of  chemical 
structures is one of  the fundamental  cognitive processes in the investigation of  
molecular  science and engineering. 

Perceptual  recognition of  pattern, experience, and intuition have been, and will 
remain,  vital forces to correlate and organize the wealth of  chemical structures and 
phenomena.  On the other hand, formal, algorithmic recognition of  the morpholo-  
gical characteristics by means of  a mathematical  language is essential to develop a 
more  universally applicable theory, to reach a deeper understanding of  given struc- 
tures and phenomena,  and further,  to gain an insight into the process of  molecular  
recognition. 

Al though the modes of  investigation corresponding with these two types of  
recognition are of  importance on their own right, while complementing each other, 
the latter mode  of  research has a special advantage over the former,  when a linkage 
between two or more  morphological  approaches comes into question. In particu- 
lar, when the language of  a mathematical  structure (such as a topological space) is 
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explicitly used, the latter can efficiently assess if there exists an interrelationship 
with another morphological approach that uses a similar mathematical structure, 
and in addition, if it is possible to mutually introduce the methodologies. 

The main objective of the present paper is to establish a linkage between two 
molecular morphological studies, which originate in different regions of chemistry 
but exhibit noteworthy parallels both in the recognition of molecular structures 
and in the use of mathematical structures. Namely, we shall connect the theory of 
symmorphy transformations [1,2], reviewed and further developed in section 2, 
with the theory of polynomial operations for the additivity problems of hydrocar- 
bons [3-7], briefly reviewed and linked in section 4 with the former theory. 

Section 3 is devoted to preparing the linkage tools, which are closely related 
with the techniques in the theory of the quotient topological space [8-13] originated 
by Alexandroff [11,12], and Moore [13]. The linkage provides an interesting 
method of topologizing the repeat space Xr(q) [3-7] which is a basic notion of the 
morphological approach to the additivity problem. The linkage also indicates that 
the category theoretical techniques of diagrams [14] are helpful: (i) in the study of 
symmorphy transformations, and, possibly, in the molecular morphological inves- 
tigations [15-17] related to it, and (ii) in other researches [18] related to linear 
operators representing chemical network systems. 

Diagrams of arrows that succinctly represent transformations acting on 
abstract spaces often serve as effective tools to reveal a linkage of mathematical 
theories. We shall use them frequently in the subsequent sections. 

2. Symmorphy transformations  

In this section, we review earlier results on symmorphy [1,2], and rephrase these 
results in a context suitable for the development of new results presented in 
sections 3 and 4. 

We shall begin by reviewing symmorphy transformations [1,2] (which we 
rephrase in proposition 1 and in what follows thereafter). There are several equiva- 
lent methods of introducing this and related notions. Among them are algebraic, 
geometric, and operator theoretical methods. However, we shall here concentrate 
on an algebraic method using diagrams of arrows, which is most suitable for our 
later purpose of linking the two morphological studies mentioned in the previous 
section. By establishing this linkage, topological patterns described by symmorphy 
groups [1,2] can be treated by the algebraic methods with category theoretic tech- 
niques developed for the additivity problems [3-7]. The reader is referred to [14] 
and references therein for the notion of commutative diagrams and related 
category theoretic techniques, and to ref. [6] for their applications to the additivity 
problems. (In the present paper, however, the reader is not required to be familiar 
with the techniques of commutative diagrams. Since our argument frequently 
provides supplementary derivations in order to minimize the preliminaries for the 
techniques.) 
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Let ]~3=  (]~3, I1 II) denote the three-dimensional Euclidean space equipped 
with the usual norm II • II, let G = G(IR 3) denote the group of all homeomorphisms 
t: IR 3 -*  IR 3, and let p: IR 3 --~ IR be an arbitrarily given function. 

Consider the following diagram: 

i~ 3 l , N3 

IR 

Diagram I 

Define a subset gp c G by 

gp = {t e G" Diagram I is commutative}. (2.1) 

Then, the following proposition, which rephrases the corresponding statements in 
refs. [1,2], is valid. 

PROPOSITION 1 

go forms a subgroup of G. 

Proof 
This is an immediate consequence from the fact that t l , t2~gp implies 

tl t2, t l  1 e gp, i.e., if h, t2 ~ gp, then the above diagram with t being replaced either by 
tl t2 or ti -1 is commutative. [] 

An element t of group gp was called a symmorphy transformation ofp. 
To recall the motivation for the terminology "symmorphy transformation", let 

us now consider the case in which p: N 3 --* l~ denotes the molecular charge density 
function and visualize p by assigning a colour with magnitude p(r) to each point 
r ~ ] ~  3. 

Recall the definition ofgp and note that a homeomorphism t: ~3 _._~]~3 is an ele- 
ment ofgp if and only if 

p(t(r)) = p(r) (2.2) 

for each r ~ N3. From this, we can easily infer that the totality gp of the symmorphy 
transformations of the molecular charge density function p coincides with the set 
of all homeomorphisms t: ]I~ 3 ~ ~3 that keep the colour distribution of p, or the 
appearance of p, invariant. 

Thus, gp is a group whose elements are selected from the group G by the criterion 
of the invariance of the appearance of/9. 

However, gp possesses excessive informations if the behavior of p is considered 
to be irrelevant on the outside (on the complement S ~) of a suitably prescribed sub- 
set S where the p maintains a conspicuous shape. This is usually the case. 
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For example, the unbounded region o f I ~  3 in which the molecular charge density 
function takes the values p(r) __< e( - 0) is of little significance for the morphological 
characterization ofp and the molecule. To deal with this situation, one may divide 
1~ 3 into two complementary parts, the relevant part S~ and the irrelevant part S~ 
for the morphology of the molecule: 

I[{ 3 = Se U S~ , 

= {r6]~3: p(r) >e} U {r6~3: p( r )<e} ,  (2.3) 

and construct a simplified group hp using gp and S~ in the following manner. 
Henceforth, we shall fix a relevant set S c R3 such that 

t(S) c S (2.4) 

for all t e gp, i.e., such that t(r) e S for all r e S and t e gp. 
The process of simplifying gp consists of three steps: 
First, introduce an equivalence relation mp to the underlying set of the group gp 

which is defined by 

tlmpt2 ¢=~ tl Is = t2 ] s ,  (2.5) 

where ti[s denotes the restriction of the mapping t; to the set S. The relation mp is 
clearly reflexive, transitive, and symmetric, thus it is an equivalence relation. 

Second, partition the underlying set of the group gp by the above defined equiva- 
lence relation mp. Each equivalence class is called a symmorphy class, and two ele- 
ments in a symmorphy class are said to be symmorphic to each other. 

Third, define the symmorphy group hp as the quotient group of gp with respect 
to the symmorphy equivalence: 

hp = gp/(mp equivalence relation), (2.6) 

where elements ofhp are symmorphy classes. 
One can directly verify that the hp is well defined, however, we shall indirectly 

check this after establishing the following 

T H E O R E M  1 

Let X and Y be non-empty sets, and let p: X-,'- Y be an arbitrary given map- 
ping. Denote by B = B(X) the group of all bijections t: X - ~  X with the group 
operation being the composite operation. Let G = G(X) be a subgroup of 
8 = B(X). 

Consider the following diagram 

X 

\ 
t 

). X 

Y 

Diagram II 
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Define a subsetgp c Gby 

gp = {te  G: diagram II is commutat ive}.  

Let S denote a non-empty subset of E such that  

t (S)  = S 

for all t ~gp, and define a subset gp0 ofgp by 

gpo = { tegp:  tls = i s } ,  

where is denotes the inclusion mapping given by is: S ~ r ~ r e X .  
Then the following statements are true: 

(i) gp forms a subgroup of G. 
(ii) gp0 forms a normal  subgroup ofgp. 
(iii) In the quotient group hp := gp/gpo, coset 

[h] := tlgpo coincides with coset [t2] := t2gpo 
if and only iftl Is = t2[s, i.e., 

[tl] = [t2] ¢:~ tl[s = t21s 

for all tl, t2 egp. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

P r o o f  
(i) The proof  of part  (i) is analogous with that of proposition 1. One easily veri- 

fies that  gp is closed under the group operation and the inverse operation (.)-1. 
Thus, gp is a subgroup of G. 

(ii) gp0 clearly forms a subgroup ofgp. Hence, it remains to show that gp0 is nor- 
mal. Recall the well-known fact that a subgroup go of a group g is normal  if and 
only if 

t - l t o tEgo  (2.11) 

for all to Ego and t eg.  
Let to ~ gp0 and t e gp be arbitrary. 

Then, for each r ~ S, we have 

(t -1 tot)(r) = t -1 (to(t(r))) 

= t - l ( t ( r ) )  

= r  (2.12) 

by (2.8) and the definition o fg~ ,  so that 

( t - l to t ) l s  = is .  (2.13) 

F rom this the conclusion follows. 
(iii) By the definition of [tl], [t2], and gp0, one gets the following necessary and 

sufficient conditions for [tl] = [t2]: 
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[tl] = [t2] ¢g, t~ -1 t2 egp0 

¢* ( tT l t2 ) l s  = i s .  

Thus, to prove (iii), it suffices to show that 

( t71t2) ls  = is ¢¢, t l[s = t2ls 

for all tl, t2 ~gp. 
(=>): Let r e S be arbitrary, then 

( t l  lt2)(r) = r .  

Operating tl to both sides, one obtains 

t2(r) = t l ( r) ,  

which implies that 

t l l s  = t21s. 

(¢=): Let r e S be arbitrary, then 

( t l  1 t2)(r) = t l  1 (t2 (r)) 

= t l l ( t 1 ( r ) )  

~ r ~  

hence, it follows that 
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(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(t-{at2)ls = i s .  (2.20) 

This completes the proof. [] 

In theorem 1, put X = (IR 3, II " II), Y = lit, and let G c B ( X )  be the subgroup of  
all homeomorphisms t: X - +  X. Then, part (iii) of theorem 1 implies that the sym- 
morphy group h e given by eq. (2.6) is meaningful; moreover,  the hp can be alterna- 
tively defined by 

hp = gp/gpo . (2.21) 

Suppose p: IR 3 -+ IR is a molecular  charge density function having symmetry ele- 
ments. Then, gp contains the corresponding symmetry operations, together with 
other operations such as nonlinear stretchings, warpings, and distortions of the 
space that preserve the appearance ofp  invariant. We remark that if one replaces G 
with the subgroup Go c G of  all isometric transformations t: IR 3 -+ IR 3 (or a suita- 
ble subgroup G00 c Go), then one obtains a g r o u p &  = &(G0) which is a descriptor 
of  the symmetry ofp. 

Under  the hypotheses of  theorem 1 together with extra assumptions that 
(i) X is a topological space, 
(ii) G c B ( X )  is the subgroup consisting of  all homeomorphisms t: X -+ X, 
all the conclusions of  theorem 1 are, of  course, valid. Thus, we can generalize the 
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notion of the symmorphy transformation and its related notions to those in more 
comprehensive situations where X is not necessarily a Euclidean space but a topo- 
logical space. 

We shall transfer all terminologies related with the symmorphy transforma- 
tion, from the special case to a general case. Suppose that the hypotheses of theo- 
rem 1 and the above stated extra assumptions (i), and (ii) are fulfilled. 
(I) The group gp is called the symmorphy transformation group ofp. Each element 

t ~gp is called a symmorphy transformation ofp. 
(II) The equivalence relation mp defined ongp by either of the following 

(i) tlmpt2 ¢* tlls = t2ls, (2.22) 

(ii) tlmpt2 ¢¢, tlgpo = tEgpo, (2.23) 

is called symmorph. 
(III) The equivalence classes constructed by mp, i.e., the left cosets tgpo(= got)  

with t e gp are called symmorphy classes. 
(IV) Two elements tl and t2 in the same symmorphy class are called symmorphic 

to each other. 
(V) The quotient group hp = gp/gpo is called the symmorphy (quotient) group o f  p. 

Now we return to theorem 1, and under the assumptions of this theorem, we 
shall construct an auxiliary group h~. The group h~ is a faithful representation of hp 
(i.e., isomorphic to hp) and is helpful to clarify the structures of the groups gp, gpo, 
and hp. 

To introduce h~, we need some preparation. 
First, let us consider the canonical homomorphism ~b: gp-+gp/gpo = hp defined 

by 

qb( t) = tgpo . (2.24) 

The mapping ~b sends each tegp to the equivalence class [t] = tgpo to which it 
belongs. 

Second, we need 

PROPOSITION 2 

Assume all the hypotheses of theorem 1. Then the following statements are 
true: 
(i) tls: S -+ X is an injection for all t ~ gp. 
(ii) The range of t l s is S for all t ~ gp, i.e., 

t(S) = S (2.25) 

for all t ~ gp. 

Proof  
(i) By the definition ofgp, all t egp are injections from which the conclusion evi- 

dently follows. 
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(ii) By the assumed property (2.8) of S, we have only to show that 

t(S) = S (2.26) 

for all t~gp. But this is clearly true since r e S  implies that t - l ( r)  ~ S  by (2.8) and 
t(t -1 (r)) = r, so that re  t(S). [] 

Third, let B(S) denote the group of  all bijections t: S--* S. Define a mapping 
w: gp -+ B(S) by 

w(t) = t[, (2.27) 

where t I denotes an element of B(S) given by 

tl(r) -- tls(r), (2.28) 

r e S .  For  any tSgp, t[ is indeed a bijection from S onto itself by proposit ion 2, 
thus, the above mapping w is well defined. 

Finally, we can give the definitions ofh~ and a related notion g~0. 
We define h*; c B(S) to be the image of w: 

hp : Im(w) = a;(gp), (2.29) 

and define g~o to be the kernel of~o: 

g~0 = Ker(w) = w- l ( ids ) ,  (2.30) 

where ids e B(S) denotes the identity element of  the group B(S), i.e., the mapping 
ids: S~r~--~reS. 

N o w  we are ready to give a theorem which illuminates the structures ofgp, g o ,  
and hp. 

THEOREM 2 

Assume all the hypothesis of theorem 1, and let q~, w, h~, and g~0 be as above. 
Then the following statements are true: 
(i) w: go -+ B(S) is a homomorphism,  i.e., 

W(tlt2) = ~(tl)~(t2) (2.31) 

holds for all tl , t2 ~ gp. 
(ii) h~ is a subgroup ofB(S).  
(iii) g~o is a normal  subgroup ofgp. 
(iv) g~o = gp0. (2.32) 
(v) hp is isomorphic to h o. 

Proof  
(i) Let tl, t2 ~gp and r ~ S be arbitrary. Then by the definition of  w, we see that 
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(w(tl  t2))(r) = (tl t2)l(r) 

-- ( t l t2) ls(r)  

= tl (t2(r)). (2.33) 

On the other hand, by the definition ofw and proposition 2, 

(w( t l )w( t2)) (r )  = (tl l t2l)(r) 

= tl [ ( t2 l ( r ) )  

= tl Is(t21s(r)) 

= q ( t 2 ( r ) ) .  (2.34) 

From eq. (2.33) and eq. (2.34), the conclusion of(i) follows immediately. 
(ii) By definition (2.29) and (i) above, h~ is the image of the group homomorph- 

ism w- gp --+ B ( S ) ,  this h~ is clearly a subgroup of the group B ( S ) .  
(iii) By definition (2.30) and (i) above, g~0 is the kernel of the group homomorph- 

ism w: gp ~ B ( S ) ,  thus g~0 is clearly a normal subgroup of the group g;.  
(iv) Straight from the definitions of g,0, w, and g~0, we have 

gpo = { tEgp:  tls = is}  

= { t~gp:  tl = ids} 

= { t~gp:  w(t) = ids} 

= w -1 (ids) 

=g~0- (2.35) 

(v) Recall the well-known fundamental theorem of group homomorphism, the 
First Isomorphism Theorem, which implies that if w: g--~ h is a surjective homo- 
morphism of groups, and q~: g - - ~ g / K e r ( w )  is the canonical homomorphism of g 
onto the quotient group g / K e r ( w ) ,  then there exists an isomorphism 
~: g / K e r ( w )  -~  h such that the following diagram commutes: 

g ~ g / K e r ( w )  

h 

Thus, we see that 

hp ~ = g p / K e r ( w )  = gp/g*po 

= gp/gpo 

----- hp. 

Diagram I I I  

[by (iv)] 

(2.36) 
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This completes the proof. [] 

We remark that parts (iii) and (iv) provide another proof of the fact that gp0 is a 
normal subgroup ofgp (see theorem 1, part (ii)). 

The technique of constructing a quotient structure, such as a quotient group 
above, through suitable classification and identification of elements in a mathe- 
matical structure is among fundamental weaponries in abstract algebra and 
topology. 

In the next section, we shall make use of the well-known notions and techniques 
in topology, especially those related to the theory of quotient topological space 
[8-11] for the linkage of molecular morphological studies mentioned in section 1. 

3. Preparation of linkage tools 

The present section provides three propositions with which to link the aforemen- 
tioned molecular morphological studies. Both studies involve molecular patterns 
and the transformations which act upon them and are associated with a topological 
space, either directly (symmorphy transformations) or indirectly (polynomial 
operations for additivity problems). This observation is an initial important step 
for the linkage, which removes a barrier between fields hitherto separately investi- 
gated and provides a fresh and deeper insight into both. 

For the purpose of the linkage of the theories, we shall consider here abstractly 
a special topological space (X, r~), and continuous transformations defined on it. 
In section 4, we shall see that this setting is general enough to embrace fundamental 
spaces and transformations in both theories. In the present section, we solely con- 
centrate on preparing the linkage tools and postpone till the next section, the expla- 
nations as to how these tools are used for our objective. 

Let X be a non-empty set equipped with an equivalence relation ~,  let [x] denote 
the equivalence class that contains x e X, let Y denote the set of all equivalence 
classes on X. Let ~: X -+ Y denote the canonical mapping defined by 

~(x) = Ix]. (3.1) 

We shall endow a topology r~ to the set X by defining the following closure 
operator -: 2 x -+ 2 x, (where 2 x denotes the set of all subsets of X, i.e., the power 
set of.V): 

A = (3.2) 

A ~2 x. 
It is easy to show that the operator - satisfies the Kuratowski closure axioms 

[8-10]. 

PROPOSITION 3 
The following relations hold for any A, B E 2 x. 



(i) 

(ii) 

(iii) 

(iv) 

Proof 
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= ¢ .  (3.3) 

A c .4. (3.4) 

, ]  = (3.5) 

A U B =  AU/3. (3.6) 

First, we shall list up some basic facts of the imagef(A) and the inverse image 
f -1  (B) of subsets under a mappingf.  

Let E, F denote non-empty sets, and let f :  E --~ F be a mapping. Let A1, A2 ~ 2 e, 
and B1, B2 e 2 v be arbitrary. Then the following relations are valid: 

(I) f (¢ )  = ¢ , f -1 (¢)  = ¢, (3.7) 

(II) f - l ( f ( A l ) )  = A1, (3.8) 

(III) f ( f - l (B1) )  c Bl, (3.9) 

( IV) f(A1 UA2) =f (A1)Uf (A2) ,  (3.10) 

f - I (BI  UB2) ---f-l(B1) Uf-I(B2),  (3.11) 

(V) A1 c A2 =~ f(A1) = f(A2).  (3.12) 

Now the proofs of (i), (ii), and (iv) directly follow respectively from (I), (II), and 
(IV) above. 

Thus, it remains to prove (iii). By the definition of the closure operator, the left- 
hand side of(iii) is expressed by 

= ~-1 (~(t~-I (~(A)))). (3.13) 

Hence, to prove (iii), it suffices to show that 

~(~-I(~(A))) = ~(A). (3.14) 

But, one easily verifies that (ii) and (V) imply 

~(~-x(~(A))) = ~(A), (3.15) 

and (III) implies 

~(~-I(~(A))) c ~(A), (3.16) 

so that eq. (3.14) holds. [] 

Thus, the topological space X = (X, r~), with the closure operator -, is well 
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defined by the well-known theorem of Kuratowski [8-10], and any subset A e 2 x is 
called closed if and only if fi~ = A, and any subset B e 2 x is called open if and only 
if its complement B c is closed. 

Note that ~: X --~ Y is a surjection by the definition of ~, and that if ~ is a bijec- 
tion, then every subset of X is closed and open at the same time, i.e., X is a discrete 
space. 

Also, note that the relation 

{x} = 

= 

= [x] (3.17) 

holds for all x e X, i.e., the equivalence class Ix] containing x is precisely the closure 
of the singleton set {x} for all x e X. 

Thus, bearing in mind that every singleton set in a Hausdorff space is closed, 
we see that X is, in general, not a Hausdorffspace. More precisely, X is a Hausdorff 
space if and only if~ is a bijection, i.e., if and only if the family of equivalent classes 
of X coincides with the set X. 

R E M A R K  

The topology ~-~ may be alternatively defined to be the weakest topology of X 
that makes m X -+ ( Y, Td) continuous, where ~-d denotes the discrete topology of Y. 
This is a dual form of the typical argument in the theory of quotient topological 
space originated by Alexandroff [11,12] and Moore [13]. For practical reasons, 
however, we used in this section Kuratowski's closure operator and the associated 
techniques [9] to prepare the linkage tools. 

Now we shall define three types of transformations o fX = (X, T~); a class preser- 
ving transformation, a class permuting transformation, and a class invariant trans- 
formation, which will be central in what follows. 

First, consider the family X x of all mappings of X into itself. The X x obviously 
forms a semigroup with the composite 
semigroups of XX: 

 0(x, = c 

where 

operation. Next consider three sub- 

(3.18) 

(i) 91(.,xk",T~) denotes the semigroup of all continuous mappings of (X, "r,~) into 
itself, 

(ii) S(X, -r~) denotes the group of all homeomorphisms of (X, "r,,) onto itself, and 
(iii) S0(X, r,~) denotes the subgroup of 9(X, ~-,:) of all mappings t ~ 9(X, r,~), satisfy- 

ing the condition 

{t(x)} = {x} (3.19) 

for all x e  (X ,  r~). 
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We shall refer to an element  of  S0(X, T~), S(X, r~), and ~1 ()t", Tt~), respectively, 
as a class invariant  t ransformat ion ,  a class pe rmut ing  t ransformat ion ,  and a class 
preserving t ransformat ion .  The mot iva t ion  of  this terminology will be clear in wha t  
follows. 

PROPOSITION 4 
Let X, ~, T~, and  Y be as above. Let t be a mapp ing  of  the topological  space 

X = (X, ~-~) into itself. Consider  the following diagram: 

X 

y ..... 

t 
~ X  

> Y  
u 

Diagram IV 

Then  the following s tatements  are true: 
(i) The  mapp ing  t is cont inuous  if and only if there exists a mapp ing  u such tha t  

d iagram IV is commuta t ive .  
(ii) The  mapp ing  t is a h o m e o m o r p h i s m  if and only if t is a bijection and there 

exists a bijection u such that  d iagram IV is commutat ive .  
(iii) The  mapp ing  t is a h o m e o m o r p h i s m  and satisfies the condi t ion (3.19) for all 

x e X if and  only if t is a bijection and d iagram IV with u = i d r  is commuta -  
tive. 

Proof  
(i) Suppose that  there exists a mapp ing  u such tha t  d iagram IV is commuta t ive .  

Let  A s 2 x be arbitrary.  Then,  one s t raightforwardly obtains the relat ion 

t (A) c t (A) = ~; - I (~( t (K;- I (~(A)) ) ) )  

= N- 1 (U(N(K;- 1 (K;(A))))) 

= t~-l(u(t~(A))))  [recall (3.14)] 

= 

= t(A) ,  (3.20) 

which shows that  t is cont inuous.  
Conversely,  suppose that  t is cont inuous.  We claim tha t  the image t([x]) of  

equivalence class [x] is conta ined in equivalence class [t(x)] for all x e  X. In fact, 
recalling (3.17), by the cont inui ty  of t ,  we have 

t([x]) = t({x}) c t({x}) = It(x)] (3.21) 

for all x e X. Therefore,  if one defines u: Y --~ Y such that  
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{u(y)} = ~(t(~; -1 ({y}))),  (3.22) 

then diagram IV is obviously commutative.  
(ii) Suppose that  t is a bijection and there exists a bijection u such that  d iagram 

IV is commutat ive.  Then it is readily verifiable that diagram IV, with t and u 
replaced by t -x and u -1, respectively, is also commutative.  Thus, by (i), both t and 
t -1 are continuous, therefore t is a homeomorphism.  

Conversely, assume that  t is a homeomorphism,  i.e., t is a bijection such that  
both t and t -1 are continuous. Again using (i), we see that  there are mappings 
u, v: Y --+ Y, such that  the central rectangular part, and the left and right rectangu- 
lar parts of  diagram V are commutative.  

t - I  
X >,X 

Y > Y  v 

t-1 t > X  > X  

> Y > Y  
U ~ 

Diagram V 

Note  that  diagram V itself is commutative.  Hence, one easily sees that 

u o v ( ~ ( x ) )  = K.(x), (3.23) 

v o u (n ( x ) )  = n(x) ,  (3.24) 

holds for all x e X. But ~ was a surjection of  X onto Y. Thus, we have 

u o v  = y o u  = i d r ,  (3.25) 

showing that  u is a bijection. Therefore, t is a bijection and there exists a bijection 
u such that  diagram IV is commutative.  

(iii) Suppose that  t is a bijection and diagram IV with u = idg is commutat ive.  
Then we have 

o t = ~,  (3.26) 

hence 

~-~ (~({t(x)})) = ~-~ (n.({x})) (3.27) 

for all x e X. Recalling the definition of  the closure operator,  it follows that  the 
condit ion (3.19) is fulfilled for all x ~ X .  On the other hand, by (ii), t is clearly a 
homeomorphism.  

Conversely, assume that t is a homeomorphism and satisfies the condit ion 
(3.19) for all x ~ X. Then t is obviously a bijection and 

= ( 3 . 2 8 )  

holds for all x e X ,  from which eq. (3.26) follows by using eq. (3.14). Thus, t is a 
bijection and diagram IV with u = idv is commutative.  [] 
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Thus, recalling the definitions of a class invariant transformation, a class per- 
muting transformation, and a class preserving transformation, from proposition 4 
one easily obtains the following proposition, a sketchy proof of which is given 
below. 

PROPOSITION 5 

Let X, ~, T~, and Y be as above. Let t be a mapping of the topological space 
X = (X, r~) into itself. Consider the following statements: 
(i)' t is a class preserving transformation. 
(i)" For any equivalence class C of X, 

t(C) c C' (3.29) 

holds for some equivalence class C' of X. 
(ii)' t is a class permuting transformation. 
(ii)" t is a bijection, moreover for any equivalence class C of X, 

t(C) = C' (3.30) 

holds for some equivalence class C' of X. 
(iii)' t is a class invariant transformation, 
(iii)" t is a bijection, moreover for any equivalence class C of X, 

t(C) = C (3.31) 

holds. 
Then the following relations are valid: 

(a) ( i ) '¢ ,  (i)", 

(b) ( i i ) '¢ ,  (ii)", 

(c) ( i i i) '¢,  (iii)". 

Proof  o f  proposition 5 
(a) Note that for any equivalence class C of X, t(C) c C' holds for some equiva- 

lence class C ~ of X if and only if there exists a mapping u such that diagram IV in 
proposition 4 is commutative. The assertion of part (a) follows from the definition 
of the class preserving transformation and part (i) of proposition 4. 

(b) We first verify that (ii)" is true if and only if the following statement (#) is 
true. 

(#): t is a bijection, moreover t and t -1 are both class preserving transforma- 
tions. 

It then remains to prove that (#) ¢,  (ii)'. But, by the definition of the class permut- 
ing transformation and the class preserving transformation, one easily infers that 
(#) is true if and only if (ii)' is true. 
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(c) Note that t is a bijection and t(C) = C for any equivalence class C of X if 
and only if t is a bijection and diagram V with u = idv is commutative. The asser- 
tion of part (c) follows from the definition of the class invariant transformation and 
part (iii) of proposition 4. [] 

4. Symmorphy transformations, class preserving transformations, and 
polynomia l  operat ions  in the repeat  space 

In the previous section, we introduced the following three families of transfor- 
mations: 

(class invariant transformations} = So(X, ~'~) 

c (class permuting transformations} = S(X, 7.~) 

(class preserving transformations} = $1 (X, ~-~), (4.1) 

without referring to the notion of symmorphy transformation. Let us now focus 
attention to the relation between the notion of the symmorphy transformation and 
that of the class invariant transformation. 

The domain of X of the symmorphy transformation t~gp(G(X, 7.)) with 
p: X --~ Y does not intrinsically involve any equivalence relation. However, one can 
introduce a natural equivalence relation ~ to X, by partitioning X into the "con- 
tour-surfaces" C, i.e., inverse images of singleton sets (y} of Y under/9: 

C = p-l({y}).  (4.2) 

It is easy to check that the relation ,-~ defined by 

xl ,-~ x2 ~ 3 y e  Y such that x l , x2ep- l ( {y} )  

¢* p(xl)  = p(x2) (4.3) 

is an equivalence relation. (In the case where p denotes a molecular charge density 
function, the equivalence classes C given by (4.2) are isodensity contour surfaces.) 

Let ~ be the canonical mapping associated with ,-~. Then, by the definition of 
the symmorphy transformations, for any equivalence class C in X induced by the 
above ~ or ~, t ~gp(G(X, 7")) implies that t(C) = C. (Indeed, t ~gp(G(X, 7")) clearly 
implies that t(C) ~ C by the definition ofgp(G(X, 7")). On the other hand, for any 
r ~ C, we have t -1 (r) ~ C. Therefore, bearing in mind that t sends t -1 (r) E C to r, we 
see that the image of any "contour surface" C under tegp(G(X,7.)) is the C 
itself.) 

Now recalling the definition of S0(X, 7.~), and proposition 5, (c), we obtain the 
relation: 

gp(G(X, 7.)) = ~0(X, 7"~). (4.4) 

Thus, the symmorphy transformation group is a subgroup of a group of class invar- 
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iant transformations, and gp(G(X, r)) can be located as a substructure of the semi- 
group $I (X, ~-~) of class preserving transformations. 

On the other hand, it should be noted that 90(X, ~-~) can be expressed using the 
notion of the symmorphy transformation group: 

S0(X, ~'~) = g~(G(X, ~'a)), (4.5) 

where rd denotes the discrete topology, and G(X, ~)  denotes the group of all home- 
omorphisms of (X, za) onto itself, i.e., the group of all bijections of X onto itself. 
(equation (4.5) immediately follows from the definition of S0(X, r~) and proposi- 
tion 4, (iii).) 

We are now in the position to recall a morphological approach developed in the 
studies of the additivity problems of the zero-point vibrational energy of hydrocar- 
bons and the total pi-electron energy of alternant hydrocarbons. The reader is 
referred to refs. [3-7] for the definitions of the repeat space Xr(q), the alpha space 
X~(q), the beta space X~(q), t h e f  space Hf(q), and the motivations of constructing 
these spaces. 

The morphological approach to the above additivity problems involves transfor- 
mations ~b of the infinite dimensional linear space X(q) of all qN x qN real matrix 
sequences {)PIN} (N = 1,2,. . .) ,  where q is a fixed positive integer. More explicitly, 
the transformation ~b: X(q) --~ X(q) associated with polynomial qo = cot ° + cl t l 
+ . . .  + c,t n was defined by 

~b({Mg}) = {c0)h~u + cxM~ + . . .  + cnM~v } , (4.6) 

and ~b was called the polynomial operation associated with polynomial qo. 
The repeat space Xr(q) with which molecular structures of homologous series 

are associated is a subspace of X(q), and X~(q) is closed under any polynomial 
operation: 

~(Xr(q)) c X~(q). (4.7) 

In other words, the repeating pattern which characterizes the elements of the 
repeat space is invariant under any given polynomial operation. 

To make an integral representation Ot int [5] of a fundamental functional a 
defined (on a suitable real normed space) by 

a(qo) = lim [Tr ~(MN)]/N, (4.8) 
N--c- oo 

we introduced the notion of t h e f  space Hf (q), the polynomial operations qb ~ which 
acts on Hf(q), and the mapping ~2: Xr(q) -~ Hf(q) defined by 

g2 Pnu ® Qn + (an element of X~(q)) (0) = exp(inO)Qn. (4.9) 
\ ~, n = - - V  n = - - V  

The ~2 is a linear mapping such that the following diagram commutes for any pair 
of polynomial operations ~3 and ~3' (cf. theorem II of [5]). 
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Xr(q) ~ > 

12 

Hf(q) > 

Diagram VI 

X,(q) 

Hf(q) 

The commutability of the above diagram was a key step in the "approach via 
the aspect of form" to construct the integral representation Ct int of the functional a. 
Using the relation Y2q5 = qS~Y2 and some results from the "approach via general 
topology", we obtained the desired integral representation, 

F aint(~o) = (1/(27r)) Tr cp(F(O)) dO, (4.10) 
7r 

where F = f2({Mg}) (cf. [5] for the domain of O~ int, and the detailed arguments on 
oLint). 

Now we wish to have the following theorem which implies that every polyno- 
mial operation ~ is a class preserving transformations: ~ e 91, as is each symmor- 
phy transformation tegp(G(X,-c)) c 90 c 9 c 91. The proof of the theorem 
makes use of the thought process in the proof of theorem 2 (in the theory of the 
symmorphy transformations), the above commutative diagram VI, and one of the 
linkage tools, proposition 4 in the previous section. 

T H E O R E M  3 
Let Xr(q)/X~(q) denote the quotient linear space of the repeat space Xr(q) by 

the beta space X~(q) with block size q. Let n: X~(q) --* X~(q)/X~(q) denote the cano- 
nical mapping defined by 

/~ ({MN} ) = { M N }  "{- X~(q), (4.11) 

and let T~ denote the topology on X~(q) given by the closure operation, 
.~ = ~-l (~(A)), where A is any subset of X~(q). Let Hf(q) denote t h e f  space with 
size q, and let Y2: Xr(q) --~ Hi(q) denote the surjective linear mapping given by (4.9). 
Then, we have 
(i) Ker(Y2) = X~(q), 
(ii) Xr(q)/X~(q) is isomorphic to Hf(q), 
(iii) Any polynomial operation ~b: (X~(q), r~) --~ (X~(q), T~) is continuous, (i.e., ~ is 

a class preserving transformation). 

Proof 
(i) By the definition of the mapping J2, 
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Ker(S2) = {{MN} eXr(q): ~2({MN}) = Of} 

= {{MN} eXr(q): {MN} = 0a + (an element of X~(q))} 

= Xz(q), (4.12) 

where Of and 0~ denote, respectively, the zero element of Hf (q) and X~ (q). 
(ii) The proof is analogous to that of theorem 2, (v): By the well-known theorem 

of linear mapping, which is similar to the First Isomorphism Theorem of Groups, 
there is a linear isomorphism ~: Xr(q)/X~(q) -~ Hf(q) such that the following dia- 
gram VII is commutative: 

t~ 

Xr(q) , Xr(q)/Ker(S2) 

Hf(q) 

Diagram VII 

But by (i), we know that Ker(S2) = Xz(q). Thus, the linear space Xr(q)/Xz(q) is iso- 
morphic to the linear space Hf (q). 

(iii) Let qb' denote the polynomial operation on Hf(q) which is associated with 
the polynomial ~. Consider the following commutative diagram, which is made by 
combining diagram VI and two copies of diagram VII: 

X~(q) ~ , X~(q) 

H 

X~(q)/X~(q) > X~(q)/X~(q) 
(o" 

~(q) ' H 
(D' 

f2 

'(q) 

Diagram VIII 
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where ~3" = g)-I o ~3' o ~.  Now focus attention to the upper trapezoidal part of 
the diagram, and apply proposition 4, (i), then the continuity of ~b follows 
immediately. [] 

To have a clear picture of the assertion of theorem 3 and of the notion of class 
preserving transformations, the reader may take the following steps: (i) select a 
concrete example of sequence {MN}EXr(q)  with q = 1 from refs. [3-7]. (ii) Set 
~p = t ~ and compute the entries of M~v for n = 2, 3. (iii) Recall the definitions of the 
mappings in diagram VIII, and calculate the images of {MN} under the compo- 
sites of mappings in the diagram. (iv) Follow the proof of theorem 3 with the above 
example in mind. 

REMARK 
Part (iii) of theorem 3 may also be derived by part (a) of proposition 5 in the 

present paper and by part (iv) of the Lemma (p. 136) in the ref. [4], which uses a ring 
theoretical technique. 

So far, in the "approach via the aspect of form" for the additivity problems, we 
solely dealt algebraically with the forms of repeat sequences which represent 
molecular structures, and we made topological considerations only in auxiliary 
functional spaces such as C(I), CBV(I) ,  and so on (cf. [3-7]). 

The above theorem indicates a way of topologizing subspaces of X(q) (such as 
X~(q), X~(q), or others), and leads one to consider continuous transformations in 
the spaces, and also continuous mapping from or into the spaces. Through the topo- 
logization of the subspaces ofX(q), and use of geometric language and picture simi- 
lar to those in the theory of symmorphy transformations, one obtains a new 
vision, and more elucidative methods to handle the additivity problems. The details 
of this development shall be published elsewhere. 

5. Concluding  remarks  

It is profitable to recall, in connection with the quotient mathematical structures 
gp/g,,,o and Xr(q)/X~(q), the notion of the shape groups [15-17], which is central 
to the study of molecular shape using algebraic topology. 

The shape groups associated with a given truncated contour surface are defined 
to be thepth homology groups: H p = Z P / B  p. The H p, for fixed surface andp,  is a 
quotient group as is the symmorphy (quotient) group hp = gJg;o.  Two elements 
xl,  x2 s Zp are called homologous to each other, if Xl - x 2  E B p. (Recall that two 
elements t l , t2egp are called symmorphic to each other if [h] = [t2], i.e., if 
ti -~ t2 ~ g;0.) 

It is also instructive to compare the quotient linear space Xr(q)/X~(q) ~- Hf(q) 
with the quotient group Hp = Z p / B  p, focusing attention to the geometric implica- 
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tions of  X~(q) and B p. By theorem 3, the X~(q) is the kernel of  the homomorphism 
f2, which sends each element {MN} in the repeat space Xr(q) onto Hf(q),  annihilat- 
ing the information on the boundary  moieties of {MN}. The group B p of  all 
p-dimensional  bounding cycles is, on the other hand, the image of  the group homo-  
morphism ap+l (the boundary  operator). Regarding the methodology and the 
mode  of  characterizing the molecular structures, one may  observe a notewor thy  
parallel between the morphological  studies using the shape group and the repeat  
space, the detail o f  which is under investigation. 

Finally, we remark  that the theoretical tools developed in the present paper are 
applied to the problems given in [18] which are seemingly unrelated to the symmor-  
phy t ransformations and operators in the repeat space Xr(q). In fact, the category 
theoretical devices using diagrams of  arrows exploited in the present paper also 
serve as a technical basis for a series of papers [18], entitled Structural Analysis of  
Certain Linear Operators Representing Chemical Network  Systems via the Exis- 
tence and Uniqueness Theorems of Spectral Resolution I, II, and III. In this series 
of  papers, the kernels of  certain linear operators are analyzed by using tools which 
are essentially analogous to those employed in the present paper. 
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